Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang He, Can-Zhong Lu,* Xiao-Yuan Wu, Quan-Zheng Zhang, Shui-Mei Chen and Jiu-Hui Liu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou,
Fujian 350002, People's Republic of China
Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.054$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diazidobis(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)cadmium(II)

The hydrothermal reaction of $\mathrm{NaN}_{3}, 1,10$-phenanthroline and $\mathrm{Cd}^{\mathrm{II}}$ in basic aqueous solution gave rise to the title complex, $\left[\mathrm{Cd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$. The $\mathrm{Cd}^{\mathrm{II}}$ atom (site symmetry 2) is sixcoordinated with distorted octahedral geometry and the two azido ions in cis positions.

Comment

We are currently interested in pursuing synthetic strategies using the $\mathrm{N}_{3}{ }^{-}$azide ligand. This is a versatile species that can act as a monodentate as well as a bridging ligand, adopting the end-on or end-to-end modes to generate interesting complexes with different structures varying from mononuclear to three-dimensional (Cheng et al., 2002; Li et al., 2002; Viau et al., 1997; Wang et al., 2004; Shen et al., 1999). We report here the preparation and crystal structure of the title complex, (I) (Fig. 1).

(I)

The asymmetric unit of (I) consists of one-half of the title complex, with the other half generated by twofold symmetry, the Cd atom lying on a twofold axis. The Cd atom is coordinated octahedrally (Table 1) by four N atoms from two 1,10phenanthroline (phen) ligands and two N atoms from two azide (az) groups, with the two azide ligands in cis positions. The $\mathrm{Cd} 1-\mathrm{N}_{\text {phen }}$ bond lengths are in the range 2.355 (4)2.415 (5) \AA, and are longer than the $\mathrm{Cd} 1-\mathrm{N}_{\mathrm{az}}$ bond of 2.280 (5) A. The cis $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ angles range from 70.48 (5) to $103.03(7)^{\circ}$, while the azide ligands are essentially linear, with $\mathrm{N} 5-\mathrm{N} 4-\mathrm{N} 3=178.5(6)^{\circ}$. One azide N atom acts as an acceptor for a weak $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N} 3^{\mathrm{i}}$ intermolecular interaction (see Table 2 for symmetry code).

Experimental

$\mathrm{CdSO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{~g}, 0.05 \mathrm{mmol}), \mathrm{NaN}_{3}(0.02 \mathrm{~g}, 0.3 \mathrm{mmol})$ and phen ($0.016 \mathrm{~g}, 0.1 \mathrm{mmol}$) were mixed in $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and heated at 433 K for 3 d in a sealed 30 ml Teflon-lined stainless steel vessel under autogenous pressure. After the reaction mixture had been cooled slowly to room temperature, colorless prism-shaped crystals of the title complex appeared.

Received 5 July 2004 Accepted 7 July 2004 Online 17 July 2004

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=556.87$
Orthorhombic, Pbcn
$a=14.071$ (7) \AA
$b=8.985$ (6) \AA
$c=17.23$ (3) \AA
$V=2178$ (4) \AA^{3}
$Z=4$
$D_{x}=1.698 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
$T_{\text {min }}=0.551, T_{\text {max }}=0.901$
15133 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.125$
$S=1.08$
2502 reflections
159 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{N} 3$	$2.280(5)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.185(6)$
$\mathrm{Cd} 1-\mathrm{N} 2$	$2.355(4)$	$\mathrm{N} 4-\mathrm{N} 5$	$1.155(6)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.415(5)$		
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{i}}$	$98.2(3)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 1$	$70.47(15)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 2$	$96.47(16)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$87.81(15)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 2$	$103.02(17)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	$87.5(2)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 2^{\mathrm{i}}$	$150.1(2)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{Cd} 1$	$134.7(4)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 1$	$166.47(15)$	$\mathrm{N} 5-\mathrm{N} 4-\mathrm{N} 3$	$178.5(6)$

Symmetry code: (i) $-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.93	2.37	$3.242(7)$	157

Symmetry code: (ii) $x-\frac{1}{2}, y-\frac{1}{2}, \frac{3}{2}-z$.
H atoms were geometrically placed in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and allowed to ride on their respective parent C atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak and deepest hole in the

Mo $K \alpha$ radiation
Cell parameters from 112 reflections
$\theta=1.9-27.5^{\circ}$
$\mu=1.04 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.60 \times 0.40 \times 0.10 \mathrm{~mm}$

2502 independent reflections 1908 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 12$
$k=-11 \rightarrow 10$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0272 P)^{2}\right. \\
& +17.7008 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.47 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.44 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
View of (I), shown with 40% probability displacement ellipsoids. The symmetry code is as in Table 1.
difference map were located 0.90 and $1.22 \AA$ from atoms Cd1 and N3, respectively.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT-Plus (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the 973 Program of MOST (001CB108906), the National Natural Science Foundation of China (90206040, 20073048, 20333070 and 20303021), the NSF of Fujian Province (2002 F015 and 2002 J006) and the Chinese Academy of Sciences.

References

Cheng, Y. Q., Liu, A. L., Hu, M. L. \& Ng, S. W. (2002). Acta Cryst. E58, m545m547.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Li, L. C., Liao, D. Z., Jiang, Z. H. \& Yan, S. P. (2002). Inorg. Chem. 41, 10191021.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shen, Z., Zuo, J.-L., Kandasamy, C., Fun, H.-K. \& You, X.-Z. (1999). Acta Cryst. C55, 901-903.
Siemens (1996). SMART, SAINT-Plus and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Viau, G., Lombardi, M. G., Munno, G. D., Julve, M., Lloret, F., Faus, J., Caneschi, A. \& Juan, J. M. C. (1997). Chem. Commun. pp. 1195-1196.
Wang, S. B., Yang, G. M., Liao, D. Z. \& Li, L. C. (2004). Inorg. Chem. 43, 852854.

